Document Type : Regular Article

Authors

1 Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.

2 Malek Ashtar University of Technology

3 malek ashtar university of technology

Abstract

1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) is one of the most powerful explosives of which the purity may have a significant effect on increasing the performance of rocket engines. In this research, the synthesis of high purity HMX is presented using the nitration of 1,5-diacetyl-3,7-dinitrooctahydro-1,3,5,7-tetrazocine (DADN) with a mixture of nitric acid and polyphosphoric acid. The nitration parameters including temperature, time, and the concentration of nitric acid, and polyphosphoric acid were optimized for the desirable purity and efficiency using the response surface method and central composite method (CCD). Based on the optimization, HMX was obtained with a purity of 99% and an efficiency of 92.9% at a temperature of 70°C and the time duration of 70 minutes with a molar ratio of polyphosphoric acid to nitric acid of 1:1:6.

Keywords

Main Subjects

[1] Wen, Y., Xue, X., Zhou, X., Guo, F., Long, X., Zhou, Y., Li, H., Zhang, C., “Twin induced sensitivity enhancement of HMX versus shock: a molecular reactive force field simulation”, J. Phys. Chem. C, 117(46), 24368-24374 (2013).
[2] Achuthan, C. P., Jose, C. I., “Studies on octahydro‐1, 3, 5, 7‐tetranitro‐1, 3, 5, 7‐tetrazocine (HMX) polymorphism”, Propellants Explos. Pyrotech, 15(6), 271-275 (1990).
[3] Bachmann, W. E., Jenner, E. L., “1-Acetoxymethyl-3, 5, 7-trinitro-1, 3, 5, 7-tetrazacycloöctane and its reactions. significance in the nitrolysis of hexamethylenetetramine and related compounds1”, J. Am. Chem. Soc., 73(6), 2773-2775 (1951).
[4] Cobbledick, R. E., Small, R. W. H., “The crystal structure of the δ-form of 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetraazacyclooctane (δ-HMX)”, Acta Crystallogr. B Struct. Cryst. Cryst. Chem., 30(8), 1918-1922 (1974).
[5] Didehban, K., Zarei, M. A., Radfar, M., Bayat, Y., “HMX Synthesis by using RFNA/P2O5 as a Novel Nitrolysis System”, Orient. J. Chem., 34(1), 576 (2018).
[6] Didehbana, Kh., Zarei, M. A., Bayat, Y., Mirshokraiea, S. A., “Sodium hexametaphosphate/ HNO3 As a novel system for the synthesis of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) via nitrolysis of 1,5-diacetyl-3,7-dinitro-1,3,5,7-tetraazacyclooctane (DADN)”, Bulg. Chem. Commun., 49, 263 – 265 (2017).
[7] Shirashoji, N., Jaeggi, J. J., Lucey, J. A., “Effect of sodium hexametaphosphate concentration and cooking time on the physicochemical properties of pasteurized process cheese”, J. Dairy Sci., 93(7), 2827-2837 (2010).
[8] Kaur, N., Kishore, D., “An insight into hexamethylenetetramine: a versatile reagent in organic synthesis”, J. Iran. Chem. Soc., 10, 1193-1228 (2013).
[9] Siele, V. I., Warman, M., Leccacorvi, J., Hutchinson, R. W., Motto, R., Gilbert, E. E., ‌Benzinger, T. M., ‌Coburn, M. D.,‌ Rohwer, R. K., Davey, R. K., “Alternative procedures for preparing HMX”, Propellants Explos. Pyrotech, 6(3), 67-73 (1981).
[10] Siele, V. I., “Process for producing 1, 3, 5, 7-tetraalkanoyl-1, 3, 5, 7-octahydrotetrazocines”, US Pat. 3979379 (1976).
[11] Akers, M.‌D., “Exploring, analysing and interpeting data with Minitab 18”, Compass Publishing,  (2018).
[12] Igbani, S., Appah, D., Ogoni, H. A., “The application of response surface methodology in Minitab 16, to identify the optimal, comfort, and adverse zones of compressive strength responses in ferrous oilwell cement sheath systems”, Int. J. Eng. Mod. Technol6, 20-39 (2020).
[13] Nazan, M. A., Ramli, F. R., Alkahari, M. R., Sudin, M. N., Abdullah, M. A., “Process parameter optimization of 3D printer using response surface method”, ARPN J. Eng. Appl. Sci., 15, 17 (2006).