Document Type : Regular Article

Authors

1 Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman,Kerman,Iran

2 Department of chemical engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

3 Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

Abstract

The properties of the Nanoclay-corn starch film were studied in the presence of Nanostarch. Nanostarch was synthesized through nanoprecipitation and characterized using the Particle Size Distribution Analysis, Field Emission Scanning Electron Microscopy (FESEM), X-ray diffraction Analysis (XRD), and Fourier Transform Infrared Analysis (FTIR). The XRD analysis of nanostarch particles revealed a distinctive V-type diffraction peak, with particle diameters ranging from 25 to 100 nm. The impact of introducing nanostarch into the starch-nanoclay film was investigated in terms of the thickness, transparency, morphology, wettability, and mechanical properties of the nanocomposite film. The results indicated that adding nanostarch particles improved the optical transparency of the film along with its hydrophobicity and flexibility. The film having a weight ratio of 0.769 (nanoclay to nanostarch) showed the maximum hydrophobicity (107.85°), and elongation at break (58.6%). This suggests that the appropriate incorporation of nanostarch can enhance the film's flexibility. The maximum tensile strength (5.88 MPa) was obtained for the film with a weight ratio of 1 (nanoclay to nanostarch).

Keywords

Main Subjects

  • Chen Q, Zhou L, Zou J, Wang J. “Response Surface Optimization of Process Conditions and Characteristics of Nanostarch-based Biocomposite Film Reinforced by Cellulose Nanocrystals”. BioResources.;14(2),4344, (2019).
  • Adeyeye, S.A.O., Babu, A.S., Guruprasath, N. and Ganesh, P.S. “Starch Nanocrystal and its Food Packaging Applications”. Current Research in Nutrition and Food Science Journal11(1), pp.01-21,(2023).
  • Cazón P, Velazquez G, Ramírez JA, Vázquez M. “Polysaccharide-based films and coatings for food packaging: A review”. Food Hydrocolloids. 68,136-48, (2017).
  • Kim, H. Y., Park, S. S., & Lim, S. T. “Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B” Biointerfaces126, 607-620, (2015).
  • Barzegar, H., Azizi, M. H., Barzegar, M., & Hamidi-Esfahani, Z. “Effect of potassium sorbate on antimicrobial and physical properties of starch–clay nanocomposite films”. Carbohydrate polymers110, 26-31, (2014).
  • Heydari, A., Alemzadeh, I., & Vossoughi, M. “Functional properties of biodegradable corn starch nanocomposites for food packaging applications”. Materials & Design50, 954-961, (2013).
  • Pelissari, F. M., Andrade-Mahecha, M. M., do Amaral Sobral, P. J., & Menegalli, F. C.” Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels”. Journal of colloid and interface science505, 154-167, (2017).
  • Fazeli, M. and Lipponen, J., 2022. “Developing Self-Assembled Starch Nanoparticles in Starch Nanocomposite Films”. ACS omega7(49), pp.44962-44971,(2022).
  • Li, X., Qiu, C., Ji, N., Sun, C., Xiong, L., & Sun, Q. “Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films”. Carbohydrate polymers121, 155-162, (2015).
  • Cheng, J., Zheng, P., Zhao, F., & Ma, X. “The composites based on plasticized starch and carbon nanotubes”. International Journal of Biological Macromolecules59, 13-19, (2013).
  • Santana, J. S., de Carvalho Costa, É. K., Rodrigues, P. R., Correia, P. R. C., Cruz, R. S., & Druzian, J. I. “Morphological, barrier, and mechanical properties of cassava starch films reinforced with cellulose and starch nanoparticles”. Journal of Applied Polymer Science136(4), 47001, (2019).
  • Sharifzadeh, E., Tohfegar, E. and Safajou Jahankhanemlou, M.“The influences of the nanoparticles related parameters on the tensile strength of polymer nanocomposites”. Iranian Journal of Chemical Engineering (IJChE)17(1), pp.65-78,(2020).
  • Roy, K., Thory, R., Sinhmar, A., Pathera, A.K. and Nain, V. “Development and characterization of nano starch-based composite films from mung bean (Vigna radiata)”. International journal of biological macromolecules144, pp.242-251,(2020).
  • Adeyeye, S. A. O., & Ashaolu, T. J. “Applications of nano‐materials in food packaging: A review”. Journal of Food Process Engineering44(7), e13708, (2021).
  • Momenpoor, B., Danafar, F., & Bakhtiari, F,”Size Controlled Preparation of Starch Nanoparticles from Wheat Through Precipitation at Low Temperature”. In Journal of Nano Research, 56, pp. 131-141, (2019).
  • Ozdemir, M., & Floros, J. D. “Optimization of edible whey protein films containing preservatives for mechanical and optical properties”. Journal of Food Engineering84(1), 116-123, (2008).
  • Qin, Y., Liu, C., Jiang, S., Xiong, L., & Sun, Q. “Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type”. Industrial Crops and Products87, 182-190, (2016).
  • García, M. A., Martino, M. N., & Zaritzky, N. E. “Microstructural characterization of plasticized starch‐based films”. Starch‐Stärke52(4), 118-124, (2000).
  • Sun, Q., Gong, M., Li, Y., & Xiong, L. “Effect of dry heat treatment on the physicochemical properties and structure of proso millet flour and starch”. Carbohydrate polymers110, 128-134, (2014).
  • Yan, X., Chang, Y., Wang, Q., Fu, Y., Ren, L., & Zhou, J. “Influence of precipitation conditions on crystallinity of amylose nanoparticles”. Starch‐Stärke70(7-8), 1700213, (2018).
  • Ma, X., Jian, R., Chang, P. R., & Yu, J. “Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites”. Biomacromolecules9(11), 3314-3320, (2008).
  • Hebeish, A., El-Rafie, M. H., El-Sheikh, M. A., & El-Naggar, M. E. “Ultra-fine characteristics of starch nanoparticles prepared using native starch with and without surfactant”. Journal of Inorganic and Organometallic Polymers and Materials24(3), 515-524, (2014).
  • Rychter, P., Kot, M., Bajer, K., Rogacz, D., Šišková, A., & Kapuśniak, J. “Utilization of starch films plasticized with urea as fertilizer for improvement of plant growth”. Carbohydrate polymers137, 127-138, (2016).
  • Lammers, K., Arbuckle-Keil, G. and Dighton, J.“FT-IR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning”. Soil Biology and Biochemistry41(2), pp.340-347,(2009).
  • Černá, M., Barros, A. S., Nunes, A., Rocha, S. M., Delgadillo, I., Čopı́ková, J., & Coimbra, M. A. “Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives”. Carbohydrate Polymers51(4), 383-389, (2003).
  • Hakke, V.S., Landge, V.K., Sonawane, S.H., Babu, G.U.B., Ashokkumar, M. and Flores, E.M., “The physical, mechanical, thermal and barrier properties of starch nanoparticle (SNP)/polyurethane (PU) nanocomposite films synthesised by an ultrasound-assisted process”. Ultrasonics Sonochemistry88, p.106069,(2022).
  • Maran, J. P., Sivakumar, V., Sridhar, R., & Thirugnanasambandham, K. “Development of model for barrier and optical properties of tapioca starch based edible films”. Carbohydrate polymers92(2), 1335-1347, (2013).
  • Druffel, T., Buazza, O., Lattis, M., Farmer, S., Spencer, M., Mandzy, N., & Grulke, E. A. “The role of nanoparticles in visible transparent nanocomposites”. In Nanophotonic Materials V7030, pp. 66-74, (2008).
  • Versino, F., Urriza, M., & García, M. A. “Eco-compatible cassava starch films for fertilizer controlled-release”. International journal of biological macromolecules134, 302-307, (2019).
  • Wang, J. L., Cheng, F., & Zhu, P. X. “Structure and properties of urea-plasticized starch films with different urea contents”. Carbohydrate polymers101, 1109-1115, (2014).
  • Zhou, T., Wang, Y., Huang, S., & Zhao, Y. “Synthesis composite hydrogels from inorganic-organic hybrids based on leftover rice for environment-friendly controlled-release urea fertilizers”. Science of the Total Environment615, 422-430, (2018).
  • Santha, N., Sudha, K. G., Vijayakumari, K. P., Nayar, V. U., & Moorthy, A. S. “Raman and infrared spectra of starch samples of sweet potato and cassava”. Journal of Chemical Sciences102(5), 705-712, (1990).
  • Kong, J., & Yu, S. “Fourier transform infrared spectroscopic analysis of protein secondary structures”. Acta biochimica et biophysica Sinica39(8), 549-559, (2007).
  • Menzel, C., Seisenbaeva, G., Agback, P., Gällstedt, M., Boldizar, A., & Koch, K. “Wheat starch carbamate: Production, molecular characterization, and film forming properties”. Carbohydrate Polymers172, 365-373, (2017).
  • Shi, A. M., Wang, L. J., Li, D., & Adhikari, B. “Characterization of starch films containing starch nanoparticles: Part 1: Physical and mechanical properties”. Carbohydrate Polymers96(2), 593-601, (2013).
  • Kim, Y. J., Lee, H. M., & Park, O. O. “Processabilities and mechanical properties of surlyn‐treated starch/LDPE blends”. Polymer Engineering & Science35(20), 1652-1657, (1995).

Bertolini, A. (Ed.). “Starches: characterization, properties, and applications”. CRC Press, (2009).