Document Type : Full article


1 Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14155/4933, Tehran, Iran

2 Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran


Silver sulfadiazine is used to prevent and treat infections of second- and third-degree burns. It kills a wide variety of bacteria. In this study silver sulfadiazine was used in gelatin based electro-spun nano-fibers with various drug to polymer ratios (0, 5, 10, 15 and 20 %). SEM, EDX and FTIR analysis showed that the continuous, bead-free, fine fibers containing silver sulfadiazine as an antibiotic drug were successfully produced. The release profiles of the loaded drug from the produced nano-fibrous dressings were evaluated by an in vitro elution method. It was observed that the sample with 10wt% of gelatin has had the optimum trend of release. Moreover, antibacterial activity of the dressings was evaluated against the pathogenic micro-organisms S.aureus and E.coli in the nutrient agar solid medium. It was obvious that all the samples had antibacterial activity against these two bacteria. The produced silver sulfadiazine loaded gelatin based electro-spun nano-fibrous dressings have the potential for being used in the wound healing applications.


Main Subjects

[1]      Dai, T., Huang, Y. Y., Sharma, S. K., Hashemi, J. T., Kurup, D. B. and Hamblin, M. R., “Topical antimicrobials for burn wound infections”, Recent Pat Anti-Infect. Drug Discov., 5 (10), 124 (2010).
[2]      Keen III, E. F., Robinson, B. J., Hospenthal, D. R., Aldous, W. K., Wolf, S. E., Chung, K. K. and Murray, S. K., “Incidence and bacteriology of burn infections at a military burn center”, Burns, 36, 461 (2010).
[3]      Rafla, K. and Tredget, E. E., “Infection control in the burn unit”, Burns, 37 (10), 5 (2011).
[4]      Venus, M., Waterman, J. and McNab, I., “Basic physiology of the skin”, Surgery(Oxford), 28 (10), 469 (2010).
[5]      Fajardo, A. R., Lopes, L. C., Caleare, A. O., Britta, A. E., Nakamura, C. V., Rubira, A. F. and Muniz, E. C., “Silver sulfadiazine loaded chitosan/chondroitin sulfate films for a potential wound dressing application”, J. Mat. Sci. Eng. C., 33, 588 (2013).
[6]      Marx, J., Rosen's emergency medicine: Concepts and clinical practice, 7th ed., Ch. 60, Thermal Burns., Mosby/Elsevier, Philadelphia, USA, p. 758 (2010).
[7]      Tintinalli, J. E.,  Emergency medicine: A comprehensive study guide (Tintinalli's Emergency Medicine), McGraw-Hill Companies, New York, (2010).
[8]      Torres Varges, E. A., do Vale Baracho, N. C., de Brito, J. and de Queiroz, A. A. A., “Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications”, J. Acta. Biomaterialia., 6 (3), 1069 (2010).
[9]      Said, S. S., Aloufy, A. K., El-halfawy, O. M., Boraei, N. A. and El-khordagui, L. K., “Antimicrobial PLGA ultrafine fibers: Interaction with wound bacteria”, Eur. J. Pharm. Biopharm., 79 (1), 108 (2011).
[10]  Edwards, R. and Hardings, K. G. “Bacteria and wound healing”, Curr. Opin. Infect. Dis., 17 (2), 91 (2004).
[11]  Boateng, J. S., Matthews, K. H., Stevens, H. N. and Eccleston, G. M., “Wound healing dressings and drug delivery systems: A review”, J. Pharm. Sci., 97 (8), 2892 (2008).
[12]  Chen, D. W., Hsu, Y. H., Liao, J. Y., Liu, S. H. J., Chen, J. K. and Ueng, S. W. N., “Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes”, Int. J. Pharm., 430 (1-2), 335 (2012).
[13]  Elsner, J. J. and Zilberman, M., “Antibiotic-eluting bioresorbable composite fibers for wound healing applications: Microstructure, drug delivery and mechanical properties”, Acta. Biomaterialia., 5 (8), 2872 (2009).
[14]  Martineau, L. and Shake, P. N. “Evaluation of a bi-layer wound dressing for burn care I. Cooling and wound healing properties”, Burns, 32 (24), 70 (2006).
[15]  Liu, S. L., Kau, Y. C., Chou, C. Y., Chen, J. K., Wu, R. C. and Yeh, W. L., “Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing”, J. Membrane. Sci., 335 (1-2), 53 (2010).
[16]  Thakur, R. A., Florek, C. A., Kohn, J. and Michniak, B. B., “Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing”, Int. J. Pharm., 364 (1), 87 (2008).
[17]  Still, T. J. and Von Recum, H. A., “Electrospinning: Applications in drug delivery and tissue engineering”, Biomaterials, 29 (13), 1989 (2008).
[18]  Jaunich, M., Bohning, M., Braun, U., Teteris, G. and Satrk, W., “Investigation of the curing state of ethylene/vinyl acetate copolymer (EVA) for photovoltaic applications by gel content determination, rheology, DSC and FTIR”, Polymer, 52, 133 (2016).
[19]  Toncheva, A., Paneva, D., Maximova, V., Monolova, M. and Rashkov, I.
“Antibacterial fluoroquinolone antibiotic-containing fibrous materials from poly(L-Lactide-co-D,L-Lactide) prepared by electrospinning”, Europian J. Pharm. Sci., 47, 642 (2012).
[20]  Baumgarten, P., “Electrostatic spinning of acrylic microfibers”, J. Colloid. Interf. Sci., 36, 71 (1971).
[21]  Doshi, J. and Reneker, D. H., “Electrospinning process and application of electrospun fibers”, J. Electrostat., 35, 151 (1995).
[22]  Deitzel, J. M., Kleinmeyer, J., Harris, D. and Tan, N. C. B., “The effect of processing variables on the morphology of electrospun nanofibers and textiles”, Polymer, 42, 261 (2001).
[23]  Megelski, S., Stephens, J. S., Chase, D. B. and Rabolt, J. F. “Micro- and nano structured surface morphology on electrospun polymer fibers”, Macromolecules, 35 (22), 8456 (2002).
[24]  Chen, S. C., Huang, X. B., Cai, X. M., Lu, J., Yuan, J. and Shen, J., “The influence of fiber diameter of electrospun poly (lactic acid) on drug delivery”, Fibers and Polymer, 13 (9), 1120 (2012).
[25]  Nguyen T. T. T., Ghosh Ch., Hwang S., Chanunpanich N. and Park J. S., “Porous core/sheath composite nano-fibres fabricated by coaxial electro-spinning as a potential mat for drug release system”, Int. J. Pharm., 439, 296 (2012).