Document Type : Full length

Authors

Department of Chemical Engineering, Razi University, P.O. Box: 14965/115, Kermanshah, Iran

Abstract

In this study, unmodified graphite and graphite modified with a silane agent were used to ameliorate the thermal conductivity coefficient and dynamical properties of unsaturated polyester resin. The effect of unmodified graphite and modified graphite addition on thermal conductivity coefficient and dynamical properties of unsaturated polyester resin in the graphite amounts of 0.02% and 0.3% by weight were studied using solid thermal conductivity measuring device and DMA test. The results showed that the silane modifier can help to create strong covalent bonds between graphite particles and unsaturated polyester resin network and cause changes in thermal and dynamic properties compared to unmodified graphite particles. Adding 0.3% of the weight of the unmodified graphite to the unsaturated polyester resin resulted in a 7% raise in the storage modulus in the glassy region. However, adding the same amount of graphite modified using the silane agent increased the storage module by 33% in the glassy region. Silane modifier caused better dispersion of graphite particles in the resin structure. Superior dispersion of graphite particles caused more interaction between graphite particles and resin network, which significantly increased the modulus of unsaturated polyester resin. In contrast, better dispersion of graphite particles because of the presence of silane agent increased the thermal resistance at the surface of graphite particles, which reduced the thermal conductivity coefficient compared to unmodified graphite.

Keywords

[1]      Al-Khanbashi, A., El-Gamal, M. and Moet, A., “Reduced shrinkage polyester-montmorillonite nanocomposite”, Journal of Applied Polymer Science, 98 (2), 767 (2005).
[2]      Beheshty, M. H., Vafayan, M. and Poorabdollah, M., “Shrinkage control and kinetics behaviour of clay-unsaturated polyester nanocomposites”, Iranian Polymer Journal, 15 (10), 841 (2006).
[3]      Beheshty, M. H., Vafayan, M. and Poorabdollah, M., “Low profile unsaturated polyester resin-clay nanocomposite properties”, Polymer Composites, 30 (5), 629 (2009).
[4]      Xu, L. and Lee, L. J., “Effect of nanoclay on shrinkage control of low profile unsaturated polyester (UP) resin cured at room temperature”, Polymer, 45 (21), 7325 (2004).
[5]      Rajabi, L., Mohammadi, Z. and Derakhshan, A. A., “Thermal stability and dynamic mechanical properties of nano and micron-TiO2 particles reinforced epoxy composites: Effect of mixing method”, Iranian Journal of Chemical Engineering (IJChE), 10 (1), 16 (2013).
[6]      Yasmin, A. and Daniel, I. M., “Mechanical and thermal properties of graphite platelet/epoxy composites”, Polymer, 45 (24), 8211 (2004).
[7]      Sadasivuni, K. K., Ponnamma, D., Thomas, S. and Grohens, Y., “Evolution from graphite to graphene elastomer composites”, Progress in Polymer Science, 39 (4), 749 (2014).
[8]      Li, J., Kim, J. K. and Sham, M. L., “Conductive graphite nanoplatelet/epoxy nanocomposites: Effects of exfoliation and UV/ozone treatment of graphite”, Scripta Materialia, 53 (2), 235 (2005).
[9]      Erol, M. and Celik, E., “Graphite-flake carbon-black-reinforced polystyrene-matrix composite films deposited on glass-fiber woven fabrics as plane heaters”, Mater. Technol., 47, 25 (2013).
[10]  Cai, W., Piner, R. D., Stadermann, F. J., Park, S., Shaibat, M. A., Ishii, Y., Yang, D., Velamakanni, A., An, S. J., Stoller, M. and An, J., “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide”, Science, 321 (5897), 1815 (2008).
[11]  Kim, M. T., Rhee, K. Y., Park, S. J. and Hui, D., “Effects of silane-modified carbon nanotubes on flexural and fracture behaviors of carbon nanotube-modified epoxy/basalt composites”, Composites Part B: Engineering, 43 (5), 2298 (2012).
[12]  Ma, P. C., Siddiqui, N. A., Marom, G. and Kim, J. K., “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review”, Composites Part A: Applied Science and Manufacturing, 41 (10), 1345 (2010).
[13]  Ezquerra, T. A., Kulescza, M. and Balta-Calleja, F. J., “Electrical transport in polyethylene-graphite composite materials”, Synthetic Metals, 41 (3), 915 (1991).
[14]  Navarro, J., Roig, A., Noguera, P., Vicente, F., Vilaplana, J. and López, J., “Electrochemical behaviour and electrical percolation in graphite-epoxy electrodes”, Journal of Materials Science, 29 (17), 4604 (1994).
[15]  Blaszkiewicz, M., McLachlan, D. S. and Newnham, R. E., “The volume fraction and temperature dependence of the resistivity in carbon black and graphite polymer composites: An effective media-percolation approach”, Polymer Engineering & Science, 32 (6), 421 (1992).
[16]  Krupa, I. and Chodak, I., “Physical properties of thermoplastic/graphite composites”, European Polymer Journal, 37 (11), 2159 (2001).
[17]  Ganguli, S., Roy, A. K. and Anderson, D. P., “Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites”, Carbon, 46 (5), 806 (2008).
[18]  Tu, H. and Ye, L., “Thermal conductive PS/graphite composites", Polymers for Advanced Technologies, 20 (1), 21 (2009).
[19]  Poorabdollah, M., Beheshty, M. H. and Vafayan, M., “A study on the kinetic behaviour and thermo-mechanical properties of nanoclay reinforced unsaturated polyester resin prepared under high shear conditions”, e-polymer, 12, 1 (2012).
[20]  Weatherhead, R. G., FRP Technology: Fibre reinforced resin systems, Springer Science & Business Media, (2012).
[21]  Poorabdollah, M., Beheshty, M. H. and Atai, M., “Investigating curing kinetics and structural relaxation phenomena of unsaturated polyester resin containing silanized silica”, Journal of Composite Materials, 50 (18), 2459 (2016).
[22]  Fornes, T. D., Yoon, P. J., Keskkula, H. and Paul, D. R., “Nylon 6 nanocomposites: The effect of matrix molecular weight”, Polymer, 42 (25), 09929 (2001).
[23]  Robertson, C. G., Lin, C. J., Rackaitis, M. and Roland, C. M., “Influence of particle size and polymer-filler coupling on viscoelastic glass transition of particle-reinforced polymers”, Macromolecules, 41 (7), 2727 (2008).
[24]  Zhang, T. and Luo, T., “Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers”, Journal of Applied Physics, 112 (9), 094304 (2012).
[25]  Kikugawa, G., Desai, T. G., Keblinski, P. and Ohara, T., “Effect of crosslink formation on heat conduction in amorphous polymers”, Journal of Applied Physics, 114 (3), 034302 (2013).
[26]  Chen, H., Ginzburg, V. V., Yang, J., Yang, Y., Liu, W., Huang, Y., Du, L. and Chen, B., “Thermal conductivity of polymer-based composites: Fundamentals and applications”, Progress in Polymer Science, 59, 41 (2016).
Ni, B., Watanabe, T. and Phillpot, S. R., “Thermal transport in polyethylene and at polyethylene-diamond interfaces investigated using molecular dynamics simulation”, Journal of Physics: Condensed Matter, 21 (8), 084219 (2009).